Parametric equations 15-12-21

Question 1

[Edexcel C4 Jan 2010 Q7a]

$$x = 5t^2 - 4$$
, $y = t(9 - t^2)$

The curve C cuts the x-axis at the points Aand B.

Find the x-coordinate at the point Aand the x-coordinate at the point B.

Correct answer:

or

Their answer:

or

(3 marks)

Question 2

The curve C has parametric equations

, $y = t^2 - 5$, $t \in$

Find a Cartesian equation for the curve C.

Correct answer:

 $y = ()^2 - 5$

Their answer:

 $y = x^2 - 14x + 44$

Question 3

The curve **C** has parametric equations

, , $t \in$

Find a Cartesian equation for the curve C.

Correct answer:

$$y = 3(\frac{x}{10}) + 1$$

Their answer:

$$y = \frac{3}{10}x + 1$$

Question 6

[Edexcel A2 Specimen Papers P2 Q10a]

Figure 4 shows a sketch of the curve C with parametric equations

$$x = \ln(x), y = 1, t > -\frac{2}{3}$$

State the domain of values of x for the curve C.

Input note: use exact values.

Correct answer:

$$x > ln\left(\frac{4}{3}\right)$$

Their answer:

 $x > ln\left(\frac{4}{3}\right)$

(1 mark)

Question 8

The curve **C** has parametric equations

, $y = t^2 - 5$, t ∈

Find a Cartesian equation for the curve C.

Correct answer:

$$y = (\frac{x}{2})^2 - 5$$

Their answer:

$$y = \frac{x^2}{4} - 5$$

Question 4

The curve **C** has parametric equations

 $, \quad y=t^2, \quad t\in$

Find a Cartesian equation for the curve *C*.

Correct answer:

y =()²

Their answer:

 $y = x^2 + 10x + 25$

Question 5

[Edexcel C4 June 2014 Q5a Edited]

Figure 3 shows a sketch of the curve C with parametric equations

 $x = 4\cos(t + \frac{\pi}{6}),$,

Show that

where A is an exact constant to be determined.

Correct answer:

Their answer:

(3 marks)

Question 7

[Edexcel C4 June 2014(R) Q8a]

The curve shown in Figure 3 has parametric equations

$$, , -3 \leq t \leq 3$$

The point A, with coordinates (), lies on the curve.

Given that , find the exact value of k.

Correct answer:

$$k = 4 - \frac{\pi}{2}$$

Their answer:

 $4 - \frac{\pi}{2}$

(2 marks)

Question 9

The curve **C** has parametric equations

, , $t \in$

Find a Cartesian equation for the curve C.

Correct answer:

$$y = 5(\frac{x}{2}) - 3$$

Their answer:

$$y = \frac{5}{2}t - 3$$

Question 10

The curve C has parametric equations

 $x = \cos^2 t$, $y = 5 \sin^2 t$,

Find a Cartesian equation for the curve C.

Correct answer:

$$x + \frac{y}{5} = 1$$

Their answer:

Question 11

[SQA Advanced Higher Maths 2017]

A beam of light passes through the points B() and T().

Obtain parametric equations of the line representing the beam of light.

Correct answer:

, ,

Their answer:

, ,

Question 12

The curve **C** has parametric equations

, , $t \in$

Find a Cartesian equation for the curve C.

Correct answer:

y = 3 - 2()

Their answer:

Question 13

[Edexcel C4 Jan 2013 Q5d Edited]

Figure 2 shows a sketch of part of the curve C with parametric equations

$$x = 1 - \frac{1}{2}t, \quad y = 2^t - 1.$$

The curve crosses the y-axis at the point A and crosses the x-axis at the point B.

The point A has coordinates () and the point B has coordinates ().

The region R, as shown shaded in Figure 2, is bounded by the curve C, the line and the x-axis.

Use integration to find the exact area of R.

Correct answer:

15–2

Their answer:

 $\frac{15}{2 \ln (2)} - 2$

(6 marks)

Question 14

The curve *C* has parametric equations

 $, y = t^2, t \in$

Find a Cartesian equation for the curve C.

Correct answer:

$$y = (\frac{x}{7})^2$$

Their answer:

$$y = \frac{x^2}{49}$$

Question 15

[OCR C4 June 2016 Q9i]

A curve has parametric equations , , for .

Find the coordinates of the points where the curve meets the x-axis.

Correct answer:

, or , or ,

Their answer:

, or , or ,

(3 marks)

Question 16

The curve C has parametric equations

, , $t \in$

Find a Cartesian equation for the curve $\ C.$

Correct answer:

$$y = 6(\frac{x}{4}) - 1$$

Their answer:

y = 2 - 1

Question 17

[Edexcel C4 June 2013 Q4b Edited]

A curve **C** has parametric equations

$$, \quad , \quad -\frac{\pi}{2} \le t \le \frac{\pi}{2}$$

Find a cartesian equation for C in the form

y = f(x),

Correct answer:

$$y = \frac{x^2}{2}$$

Their answer:

$$y = \frac{x^2}{2}$$

(3 marks)

Question 18

[Edexcel C4 June 2017 Q1c]

The curve C has parametric equations

$$y = 5 - \frac{6}{t}$$

Show that the cartesian equation for C can be written in the form

where *a* and *b* are integers to be determined.

Correct answer:

y ≕

Their answer:

(3 marks)

Question 19

[Edexcel C4 June 2017 Q8b Edited]

Figure 4 shows a sketch of part of the curve C with parametric equations

 $y = \sec 3\theta$ $0 \le \theta < \frac{\pi}{2}$

The point P()lies on C, where kis a constant.

It can be shown that

The finite region R, shown shaded in Figure 4, is bounded by the curve C, the y-axis, the x-axis and the line with equation .

Show that the area of R can be expressed in the form

where λ , α and β are constants to be determined.

Correct answer:

$$\beta = \frac{\pi}{3}$$

$$\beta = \frac{\pi}{3}$$

(4 marks)

Question 20

[Edexcel C4 June 2017 Q8a]

Figure 4 shows a sketch of part of the curve $\ C$ with parametric equations

$$y = \sec 3\theta$$
 $0 \le \theta < \frac{\pi}{2}$

The point P()lies on C, where kis a constant.

Find the exact value of k.

Correct answer:

Their answer:

(2 marks)

JLL PST - Consolidation 14

Total Marks: 16

Question 17

[Edexcel C3 Jan 2007 Q8iia]

Given that

, and ,

express in terms of y.

Correct answer:

arcsin $x = \frac{\pi}{2} - y$

Their answer:

$$-y + \frac{\pi}{2}$$

(2 marks)

Question 4

[Edexcel C3 Jan 2007 Q2b Edited]

$$f(x) = 1 - \frac{3}{-1} + \frac{3}{(x)^2}$$

It can be shown that $f(x) = \frac{x^2 + x + 1}{()^2}$,

Show that $x^2 + x + 1 > 0$ for all values of x.

Input note: write $x^2 + x + 1$ in a form that explicitly show it is positive for all x.

Correct answer:

 $x^{2}+x+1=(x+\frac{1}{2})^{2}+\frac{3}{4}$

Their answer:

 $(x+\frac{1}{2})^2+\frac{3}{4}$

(3 marks)

Question 11

[Edexcel C3 Jan 2007 Q6a Edited]

The function f is defined by

 $f:x \rightarrow In$ (), and $x \in$

Find the inverse function of f.

Correct answer:

$$f^{-1}(x) = 2 - \frac{1}{2}e^{x}$$

Their answer:

$$2 - \frac{1}{2}e^{x}$$

(4 marks)

Question 3

[Edexcel C3 Jan 2007 Q2a Edited]

$$f(x) = 1 - \frac{3}{-1} + \frac{3}{(x)^2}$$

Show that $f(x) = \frac{x^2 + ax + b}{()^2}$, where *a* and *b* are constants to be found.

Correct answer:

Their answer:

,

,

(4 marks)

Question 16

[Edexcel C3 Jan 2007 Q8i Edited]

Prove that

 $\sec^{2}x - \csc^{2}x = a \tan^{2}x + b \cot^{2}x$

where *a* and *b* are constants to be found.

Correct answer:

,

Their answer:

,

(3 marks)

JLL PST - Consolidation 14

Total Marks: 47

Question 18

[Edexcel C3 Jan 2007 Q8iib Edited]

Given that

, and ,

It can be shown that $\arcsin x = \frac{\pi}{2} - y$

Hence evaluate . Give your answer in terms of π .

Correct answer:

 $\arccos x + \arcsin x = \frac{\pi}{2}$

Their answer:

<u>л</u> 2

(1 mark)

Question 1

[Edexcel C3 Jan 2007 Q1a Edited]

By writing as *sin* (), show that

 $\sin 3\theta = a \sin \theta - b \sin^3 \theta$

where *a* and *b* are constants to be found.

Correct answer:

Their answer:

,

,

(5 marks)

Question 2

[Edexcel C3 Jan 2007 Q1b Edited]

It can be shown that

 $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$

Given that , find the exact value of $% \mathcal{A}_{\mathrm{r}}$.

Correct answer:

Their answer:

(2 marks)

Question 5

[Edexcel C3 Jan 2007 Q3b Edited]

The curve **C** has equation .

It can be shown that the point lies on *C*.

Find the value of \cdot at **P**.

Correct answer:

Their answer:

(4 marks)

Question 6

[Edexcel C3 Jan 2007 Q3c Edited]

The curve **C** has equation .

It can be shown that the point lies on *C*.

It is given that at **P**.

Find an equation of the normal to C at P. Give your answer in the form , where m and c are exact constants.

Correct answer:

Their answer:

(4 marks)

Question 7

[Edexcel C3 Jan 2007 Q4i]

The curve C has equation $y = \frac{x}{9 + x^2}$.

Use calculus to find the coordinates of the turning points of C.

Correct answer:

$$y = \frac{1}{6}$$
 or $y = -\frac{1}{6}$

Their answer:

$$y = \frac{1}{6}$$
 or $y = -\frac{1}{6}$

(6 marks)

Question 8

[Edexcel C3 Jan 2007 Q4ii]

Given that $y = (1 + e)\frac{3}{2}$, find the value of $x = \frac{1}{2}\ln 3$.

Correct answer:

-=18

Their answer:

18

(5 marks)

Question 9

[Edexcel C3 Jan 2007 Q5a]

Figure 1 shows an oscilloscope screen.

The curve on the screen satisfies the equation .

Express the equation of the curve in the form $y = R \sin(x)$, where R and α are constants, and

$$0 < \alpha < \frac{\pi}{2}$$
.

Input note: give your answers as exact values.

Correct answer:

$$, \alpha = \frac{\pi}{3}$$

Their answer:

$$, \alpha = \frac{\pi}{3}$$

(4 marks)

Question 10

Figure 1 shows an oscilloscope screen.

The curve on the screen satisfies the equation .

It can be shown that $y = 2 \sin \left(x + \frac{\pi}{3}\right)$

Find the values of x, , for which .

Input note: give your solutions as exact values.

Correct answer:

$$x = \frac{\pi}{2}$$
 or $x = 6$

Their answer:

$$x = \frac{\pi}{2}$$
 or $x = 6$

(4 marks)

Question 11

[Edexcel C3 Jan 2007 Q6a Edited]

The function f is defined by

 $f:x \rightarrow ln$ (), and $x \in$

Find the inverse function of f.

(4 marks)

Question 12

[Edexcel C3 Jan 2007 Q6b Edited]

The function f is defined by

 $f:x \rightarrow ln()$, and $x \in$

It can be shown that $f^{-1}(x) = 2 - \frac{1}{2}e^x$

Write down the range of f^{-1} .

Correct answer:

 $f^{-1}(x) < 2$

Their answer:

 $f^{-1}(x) < 2$

(1 mark)

Question 13

[Edexcel C3 Jan 2007 Q6d Edited]

The function f is defined by

$$f:x \rightarrow ln()$$
, and $x \in$

It can be shown that $f^{-1}(x) = 2 - \frac{1}{2}e^x$

The graph of crosses the graph of $y = f^{-1}(x)$ at .

The iterative formula

$$x = -\frac{1}{2}ex_n, x_0 = -0.3$$

is used to find an approximate value for k.

Calculate the values of x_1 and x_2 , giving your answer to 4 decimal places.

Correct answer:

 $x_1 = -0.3704$ and $x_2 = -0.3452$

Their answer:

 $x_1 = -0.3704$ and $x_2 = -0.3452$

(2 marks)

Question 15

[Edexcel C3 Jan 2007 Q7c]

 $f(x) = x^4 - 4x - 8$

Given that $f(x) = ()(x^3 + ax^2 + bx + c)$, find the values of the constants a, b and c.

Correct answer:

, ,

Their answer:

, ,

(3 marks)

Question 17

[Edexcel C3 Jan 2007 Q8iia]

Given that

, and ,

express in terms of y.

(2 marks)

Year 13 Consolidation 11

Total Marks: 9

Question 5

[Edexcel C3 Jan 2006 Q4b]

Given that $x = 4 \sin(x)$, find in terms of x.

Correct answer:

1 $= \frac{1}{8\cos} (\arcsin(\frac{x}{4}))$

Their answer:

(5 marks)

Question 15

[Edexcel C3 Jan 2006 Q8d Edited]

The functions **f** and **g** are defined by

, $x \in$

 $g:x \rightarrow e, x \in$

It can be shown that gf(x) = 4e

Find the value of x for which d(gf(x)) = 3, giving your answer to 3 significant figures.

Correct answer:

-0.418

Their answer:

-0.418

(4 marks)

Year 13 Consolidation 11

Total Marks: 55

Question 2

[Edexcel C3 Jan 2006 Q3]

The point *P* lies on the curve with equation $y = ln \left(\frac{1}{3}x\right)$. The *x*-coordinate of *P* is 3.

Find an equation of the normal to the curve at the point P in the form , where a and b are constants.

Correct answer:

Their answer:

(5 marks)

Question 3

[Edexcel C3 Jan 2006 Q4ai]

Differentiate with respect to x

x²e

Correct answer:

 $d(x^2e) = 3x^2e + 2xe$

Their answer:

 $2xe + 3x^2e$

(4 marks)

Question 4

[Edexcel C3 Jan 2006 Q4aii]

Differentiate with respect to x

cos (2x³)

Correct answer:

 $\underline{d(\cos(2x^3))} = \frac{-18x^3\sin(2x^3) - 3\cos(2x^3)}{9x^2}$

Their answer:

 $\frac{-6x^{3} \sin (2x^{3}) - \cos (2x^{3})}{3x^{2}}$

(4 marks)

Question 5

[Edexcel C3 Jan 2006 Q4b]

Given that $x = 4 \sin(0)$, find in terms of x.

(5 marks)

Question 6

[Edexcel C3 Jan 2006 Q6a Edited]

 $f(x) = 12\cos x - 4\sin x$

Given that $f(x) = R \cos(x)$, where and $0 \le \alpha \le 90^\circ$, find the value of R and the value of α .

Input note: give both values correct to 1 decimal place.

Correct answer:

12.6 and 18.4 $^\circ$

Their answer:

12.6 and 18.4 $^\circ$

(4 marks)

Question 7

[Edexcel C3 Jan 2006 Q6b Edited]

$f(x) = 12 \cos x - 4 \sin x$

It can be shown that

Hence solve the equation

for $0 \le x < 360^\circ$, giving your answers to one decimal place.

Correct answer:

38.0 $^\circ and$ 285.2 $^\circ$

Their answer:

38.0 $^\circ and$ 285.2 $^\circ$

(5 marks)

Question 8

[Edexcel C3 Jan 2006 Q6ci Edited]

 $f(x) = 12 \cos x - 4 \sin x$

It can be shown that

Write down the minimum value of $\$.

Correct answer:

Their answer:

(1 mark)

Question 9

[Edexcel C3 Jan 2006 Q6cii Edited]

 $f(x) = 12 \cos x - 4 \sin x$

It can be shown that

Find, to 2 decimal places, the smallest positive value of x for which the minimum value of occurs.

Correct answer:

161.57 °

Their answer:

161.57 °

(2 marks)

Question 10

[Edexcel C3 Jan 2006 Q7ai Edited]

Express

where
$$x \neq (n - \frac{1}{4})\pi$$
, $n \in$

interms of and only.

Correct answer:

Their answer:

(2 marks)

Question 11

[Edexcel C3 Jan 2006 Q7aii Edited]

Show that

$$\frac{1}{2}() \equiv \cos^2 x - \cos x \sin x - a$$

where *a* is a constant to be found.

Correct answer:

 $a = \frac{1}{2}$

Their answer:

0.5

(3 marks)

Question 12

[Edexcel C3 Jan 2006 Q7c]

Solve, for ,

giving your answers in terms of π .

Correct answer:

$$\theta = \frac{\pi}{8}$$
 or $\theta = 8$ or $\theta = 8$ or $\theta = 8$

Their answer:

$$\theta = \frac{\pi}{8}$$
 or $\theta = 8$ or $\theta = 8$ or $\theta = 8$

(4 marks)

Question 13

[Edexcel C3 Jan 2006 Q8a Edited]

The functions *f* and *g* are defined by

, x∈

 $g:x \rightarrow e, x \in$

Find the composite function in the form gf(x) = ae

Correct answer:

gf(x) = 4e

Their answer:

4e

(4 marks)

Question 14

[Edexcel C3 Jan 2006 Q8c Edited]

The functions **f** and **g** are defined by

, x∈

 $g:x \rightarrow e, x \in$

It can be shown that gf(x) = 4e

Write down the range of .

Correct answer:

gf(x) > 0

Their answer:

gf(x) > 0

(1 mark)

Question 15

[Edexcel C3 Jan 2006 Q8d Edited]

The functions **f** and **g** are defined by

, x∈

 $g:x \rightarrow e, x \in$

It can be shown that gf(x) = 4e

Find the value of x for which d(gf(x)) = 3, giving your answer to 3 significant figures.

(4 marks)

Question 1

[Edexcel C3 Jan 2006 Q2]

Express

$$\frac{2x^2+3x}{()()} - \frac{6}{x^2-x-2}$$

as a single fraction in its simplest form.

Correct answer:

Their answer:

(7 marks)